mvpa2.misc.plot.erp.plot_erps¶
-
mvpa2.misc.plot.erp.
plot_erps
(erps, data=None, ax=None, pre=0.2, post=None, pre_onset=None, xlabel='time (s)', ylabel='$\\mu V$', ylim=None, ymult=1.0, legend=None, xlformat='%4g', ylformat='%4g', loffset=10, alinewidth=2, **kwargs)¶ Plot multiple ERPs on a new figure.
Parameters: erps : list of tuples
List of definitions of ERPs. Each tuple should consist of (label, color, onsets) or a dictionary which defines, label, color, onsets, data. Data provided in dictionary overrides ‘common’ data provided in the next argument
data
data :
Data for ERPs to be derived from 1D (samples)
ax :
Where to draw (e.g. subplot instance). If None, new figure is created
pre : float, optional
Duration (seconds) to be plotted prior to onset
pre_onset : None or float
If data is already in epochs (2D) then pre_onset provides information on how many seconds pre-stimulus were used to generate them. If None, then pre_onset = pre
post : None or float
Duration (seconds) to be plotted after the onset. If any data is provided with onsets, it can’t be None. If None – plots all time points after onsets
ymult : float, optional
Multiplier for the values. E.g. if negative-up ERP plot is needed: provide ymult=-1.0
xlformat : str, optional
Format of the x ticks
ylformat : str, optional
Format of the y ticks
legend : None or string
If not None, legend will be plotted with position argument provided in this argument
loffset : int, optional
Offset in voxels for axes and tick labels. Different matplotlib frontends might have different opinions, thus offset value might need to be tuned specifically per frontend
alinewidth : int, optional
Axis and ticks line width
**kwargs :
Additional arguments provided to plot_erp()
Returns: h :
current fig handler
Examples
kwargs = {'SR' : eeg.SR, 'pre_mean' : 0.2} fig = plot_erps((('60db', 'b', eeg.erp_onsets['60db']), ('80db', 'r', eeg.erp_onsets['80db'])), data[:, eeg.sensor_mapping['Cz']], ax=fig.add_subplot(1,1,1,frame_on=False), pre=0.2, post=0.6, **kwargs)
or
fig = plot_erps((('60db', 'b', eeg.erp_onsets['60db']), {'color': 'r', 'onsets': eeg.erp_onsets['80db'], 'data' : data[:, eeg.sensor_mapping['Cz']]} ), data[:, eeg.sensor_mapping['Cz']], ax=fig.add_subplot(1,1,1,frame_on=False), pre=0.2, post=0.6, **kwargs)