mvpa2.datasets.sources.skl_dataΒΆ
Wrapper for sklearn datasets/data generators.
Functions
skl_biclusters(shape, n_clusters[, noise, ...]) |
Generate an array with constant block diagonal structure for biclustering. |
skl_blobs([n_samples, n_features, centers, ...]) |
Generate isotropic Gaussian blobs for clustering. |
skl_boston() |
Load and return the boston house-prices dataset (regression). |
skl_checkerboard(shape, n_clusters[, noise, ...]) |
Generate an array with block checkerboard structure for biclustering. |
skl_circles([n_samples, shuffle, noise, ...]) |
Make a large circle containing a smaller circle in 2d. |
skl_classification([n_samples, n_features, ...]) |
Generate a random n-class classification problem. |
skl_diabetes() |
Load and return the diabetes dataset (regression). |
skl_digits([n_class]) |
Load and return the digits dataset (classification). |
skl_friedman1([n_samples, n_features, ...]) |
Generate the “Friedman #1” regression problem |
skl_friedman2([n_samples, noise, random_state]) |
Generate the “Friedman #2” regression problem |
skl_friedman3([n_samples, noise, random_state]) |
Generate the “Friedman #3” regression problem |
skl_gaussian_quantiles([mean, cov, ...]) |
Generate isotropic Gaussian and label samples by quantile |
skl_hastie_10_2([n_samples, random_state]) |
Generates data for binary classification used in Hastie et al. |
skl_iris() |
Load and return the iris dataset (classification). |
skl_lfw_pairs([download_if_missing]) |
Alias for fetch_lfw_pairs(download_if_missing=False) |
skl_lfw_people([download_if_missing]) |
Alias for fetch_lfw_people(download_if_missing=False) |
skl_linnerud() |
Load and return the linnerud dataset (multivariate regression). |
skl_low_rank_matrix([n_samples, n_features, ...]) |
Generate a mostly low rank matrix with bell-shaped singular values |
skl_mlcomp(name_or_id[, set_, mlcomp_root]) |
Load a datasets as downloaded from http://mlcomp.org |
skl_moons([n_samples, shuffle, noise, ...]) |
Make two interleaving half circles |
skl_multilabel_classification([n_samples, ...]) |
Generate a random multilabel classification problem. |
skl_regression([n_samples, n_features, ...]) |
Generate a random regression problem. |
skl_s_curve([n_samples, noise, random_state]) |
Generate an S curve dataset. |
skl_sparse_coded_signal(n_samples, ...[, ...]) |
Generate a signal as a sparse combination of dictionary elements. |
skl_sparse_spd_matrix([dim, alpha, ...]) |
Generate a sparse symmetric definite positive matrix. |
skl_sparse_uncorrelated([n_samples, ...]) |
Generate a random regression problem with sparse uncorrelated design |
skl_spd_matrix(n_dim[, random_state]) |
Generate a random symmetric, positive-definite matrix. |
skl_swiss_roll([n_samples, noise, random_state]) |
Generate a swiss roll dataset. |



