mvpa2.datasets.formats.to_lightsvm_format¶
- 
mvpa2.datasets.formats.to_lightsvm_format(dataset, out, targets_attr='targets', domain=None, am=None)¶
- Export dataset into LightSVM format - Parameters: - dataset : Dataset - out : - Anything understanding .write(string), such as - File- targets_attr : string, optional - Name of the samples attribute to be output - domain : {None, ‘regression’, ‘binary’, ‘multiclass’}, optional - What domain dataset belongs to. If - None, it would be deduced depending on the datatype (‘regression’ if float, classification in case of int or string, with ‘binary’/’multiclass’ depending on the number of unique targets)- am : - AttributeMapor None, optional- Which mapping to use for storing the non-conformant targets. If None was provided, new one would be automagically generated depending on the given/deduced domain. - Returns: - am : - LightSVM format is an ASCII representation with a single sample per : - each line:: : - output featureIndex:featureValue ... featureIndex:featureValue - where ``output`` is specific for a given domain: : - regression : - float number - binary : - integer labels from {-1, 1} - multiclass : - integer labels from {1..ds.targets_attr.nunique} 

 
  

