mvpa2.clfs.metaΒΆ
Meta classifiers – classifiers which use other classifiers or preprocessing
Meta Classifiers can be grouped according to their function as
| group BoostedClassifiers: | |
|---|---|
| CombinedClassifier MulticlassClassifier SplitClassifier | |
| group ProxyClassifiers: | |
| ProxyClassifier BinaryClassifier MappedClassifier FeatureSelectionClassifier | |
| group PredictionsCombiners for CombinedClassifier: | |
| PredictionsCombiner MaximalVote MeanPrediction | |
Functions
Classes
BinaryClassifier(clf, poslabels, neglabels, ...) |
ProxyClassifier which maps set of two labels into +1 and -1 |
BoostedClassifier([clfs, propagate_ca]) |
Classifier containing the farm of other classifiers. |
ClassifierCombiner(clf[, variables]) |
Provides a decision using training a classifier on predictions/estimates |
CombinedClassifier([clfs, combiner]) |
BoostedClassifier which combines predictions using some |
FeatureSelectionClassifier(clf, mapper, **kwargs) |
This is nothing but a MappedClassifier. |
MappedClassifier(clf, mapper, **kwargs) |
ProxyClassifier which uses some mapper prior training/testing. |
MaximalVote(**kwargs) |
Provides a decision using maximal vote rule |
MeanPrediction([descr]) |
Provides a decision by taking mean of the results |
MulticlassClassifier(clf[, bclf_type]) |
Perform multiclass classification using a list of binary classifiers. |
PredictionsCombiner([descr]) |
Base class for combining decisions of multiple classifiers |
ProxyClassifier(clf, **kwargs) |
Classifier which decorates another classifier |
RegressionAsClassifier(clf[, centroids, ...]) |
Allows to use arbitrary regression for classification. |
SplitClassifier(clf[, partitioner, splitter]) |
BoostedClassifier to work on splits of the data |
TreeClassifier(clf, groups, **kwargs) |
TreeClassifier which allows to create hierarchy of classifiers |



