mvpa2.clfs.glmnet.GLMNET_C¶
-
class
mvpa2.clfs.glmnet.
GLMNET_C
(**kwargs)¶ GLM-NET Multinomial Classifier.
This is the GLM-NET algorithm from
Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization Paths for Generalized Linear Models via Coordinate Descent. http://www-stat.stanford.edu/~hastie/Papers/glmnet.pdf
parameterized to be a multinomial classifier.
See GLMNET_Class for the gaussian regression version.
Notes
Available conditional attributes:
calling_time+
: Noneestimates+
: Internal classifier estimates the most recent predictions are based onpredicting_time+
: Time (in seconds) which took classifier to predictpredictions+
: Most recent set of predictionsraw_results
: Nonetrained_dataset
: Nonetrained_nsamples+
: Nonetrained_targets+
: Nonetraining_stats
: Confusion matrix of learning performancetraining_time+
: None
(Conditional attributes enabled by default suffixed with
+
)Methods
get_sensitivity_analyzer
(**kwargs)Returns a sensitivity analyzer for GLMNET. Initialize
See
Parameters: family : {gaussian, multinomial}, optional
Response type of your targets (either ‘gaussian’ for regression or ‘multinomial’ for classification). Constraints: value must be one of (‘gaussian’, ‘multinomial’). [Default: ‘gaussian’]
alpha : float, optional
The elastic net mixing parameter. Larger values will give rise to less L2 regularization, with alpha=1.0 as a true LASSO penalty. Constraints: value must be convertible to type ‘float’, and value must be in range [0.01, 1.0]. [Default: 1.0]
nlambda : int, optional
Maximum number of lambdas to calculate before stopping if not converged. Constraints: value must be convertible to type ‘int’, and value must be in range [1, inf]. [Default: 100]
standardize : bool, optional
Whether to standardize the variables prior to fitting. Constraints: value must be convertible to type bool. [Default: True]
thresh : float, optional
Convergence threshold for coordinate descent. Constraints: value must be convertible to type ‘float’, and value must be in range [1e-10, 1.0]. [Default: 0.0001]
pmax : int or None, optional
Limit the maximum number of variables ever to be nonzero. Constraints: (value must be convertible to type ‘int’, and value must be in range [1, inf]), or value must be
None
. [Default: None]maxit : int, optional
Maximum number of outer-loop iterations for ‘multinomial’ families. Constraints: value must be convertible to type ‘int’, and value must be in range [10, inf]. [Default: 100]
model_type : {covariance, naive}, optional
‘covariance’ saves all inner-products ever computed and can be much faster than ‘naive’. The latter can be more efficient for nfeatures>>nsamples situations. Constraints: value must be one of (‘covariance’, ‘naive’). [Default: ‘covariance’]
enable_ca : None or list of str
Names of the conditional attributes which should be enabled in addition to the default ones
disable_ca : None or list of str
Names of the conditional attributes which should be disabled
auto_train : bool
Flag whether the learner will automatically train itself on the input dataset when called untrained.
force_train : bool
Flag whether the learner will enforce training on the input dataset upon every call.
space : str, optional
Name of the ‘processing space’. The actual meaning of this argument heavily depends on the sub-class implementation. In general, this is a trigger that tells the node to compute and store information about the input data that is “interesting” in the context of the corresponding processing in the output dataset.
pass_attr : str, list of str|tuple, optional
Additional attributes to pass on to an output dataset. Attributes can be taken from all three attribute collections of an input dataset (sa, fa, a – see
Dataset.get_attr()
), or from the collection of conditional attributes (ca) of a node instance. Corresponding collection name prefixes should be used to identify attributes, e.g. ‘ca.null_prob’ for the conditional attribute ‘null_prob’, or ‘fa.stats’ for the feature attribute stats. In addition to a plain attribute identifier it is possible to use a tuple to trigger more complex operations. The first tuple element is the attribute identifier, as described before. The second element is the name of the target attribute collection (sa, fa, or a). The third element is the axis number of a multidimensional array that shall be swapped with the current first axis. The fourth element is a new name that shall be used for an attribute in the output dataset. Example: (‘ca.null_prob’, ‘fa’, 1, ‘pvalues’) will take the conditional attribute ‘null_prob’ and store it as a feature attribute ‘pvalues’, while swapping the first and second axes. Simplified instructions can be given by leaving out consecutive tuple elements starting from the end.postproc : Node instance, optional
Node to perform post-processing of results. This node is applied in
__call__()
to perform a final processing step on the to be result dataset. If None, nothing is done.descr : str
Description of the instance
Methods
get_sensitivity_analyzer
(**kwargs)Returns a sensitivity analyzer for GLMNET.