mvpa2.base.learner.Learner

Inheritance diagram of Learner

class mvpa2.base.learner.Learner(auto_train=False, force_train=False, **kwargs)

Common trainable processing object.

A Learner is a Node that can (maybe has to) be trained on a dataset, before it can perform its function.

Notes

Available conditional attributes:

  • calling_time+: Time (in seconds) it took to call the node
  • raw_results: Computed results before invoking postproc. Stored only if postproc is not None.
  • trained_dataset: The dataset it has been trained on
  • trained_nsamples+: Number of samples it has been trained on
  • trained_targets+: Set of unique targets (or any other space) it has been trained on (if present in the dataset trained on)
  • training_time+: Time (in seconds) it took to train the learner

(Conditional attributes enabled by default suffixed with +)

Methods

train(ds) The default implementation calls _pretrain(), _train(), and finally _posttrain().
untrain() Reverts changes in the state of this node caused by previous training
Parameters:

auto_train : bool

Flag whether the learner will automatically train itself on the input dataset when called untrained.

force_train : bool

Flag whether the learner will enforce training on the input dataset upon every call.

enable_ca : None or list of str

Names of the conditional attributes which should be enabled in addition to the default ones

disable_ca : None or list of str

Names of the conditional attributes which should be disabled

space : str, optional

Name of the ‘processing space’. The actual meaning of this argument heavily depends on the sub-class implementation. In general, this is a trigger that tells the node to compute and store information about the input data that is “interesting” in the context of the corresponding processing in the output dataset.

pass_attr : str, list of str|tuple, optional

Additional attributes to pass on to an output dataset. Attributes can be taken from all three attribute collections of an input dataset (sa, fa, a – see Dataset.get_attr()), or from the collection of conditional attributes (ca) of a node instance. Corresponding collection name prefixes should be used to identify attributes, e.g. ‘ca.null_prob’ for the conditional attribute ‘null_prob’, or ‘fa.stats’ for the feature attribute stats. In addition to a plain attribute identifier it is possible to use a tuple to trigger more complex operations. The first tuple element is the attribute identifier, as described before. The second element is the name of the target attribute collection (sa, fa, or a). The third element is the axis number of a multidimensional array that shall be swapped with the current first axis. The fourth element is a new name that shall be used for an attribute in the output dataset. Example: (‘ca.null_prob’, ‘fa’, 1, ‘pvalues’) will take the conditional attribute ‘null_prob’ and store it as a feature attribute ‘pvalues’, while swapping the first and second axes. Simplified instructions can be given by leaving out consecutive tuple elements starting from the end.

postproc : Node instance, optional

Node to perform post-processing of results. This node is applied in __call__() to perform a final processing step on the to be result dataset. If None, nothing is done.

descr : str

Description of the instance

Methods

train(ds) The default implementation calls _pretrain(), _train(), and finally _posttrain().
untrain() Reverts changes in the state of this node caused by previous training
auto_train

Whether the Learner performs automatic trainingwhen called untrained.

force_train

Whether the Learner enforces training upon everycalled.

is_trained

Whether the Learner is currently trained.

train(ds)

The default implementation calls _pretrain(), _train(), and finally _posttrain().

Parameters:

ds: Dataset :

Training dataset.

Returns:

None :

untrain()

Reverts changes in the state of this node caused by previous training