mvpa2.featsel.rfe.ProxyMeasure

Inheritance diagram of ProxyMeasure

class mvpa2.featsel.rfe.ProxyMeasure(measure, skip_train=False, **kwargs)

Wrapper to allow for alternative post-processing of a shared measure.

This class is useful whenever a measure (or for example a trained classifier) shall be utilized in multiple nodes, but each node needs to perform its on post-processing of results. One can simply wrap the measure into this class and assign arbitrary post-processing nodes to the wrapper, instead of the measure itself.

Notes

Available conditional attributes:

  • calling_time+: None
  • null_prob+: None
  • null_t: None
  • raw_results: None
  • trained_dataset: None
  • trained_nsamples+: None
  • trained_targets+: None
  • training_time+: None

(Conditional attributes enabled by default suffixed with +)

Methods

Parameters:

skip_train : bool, optional

Flag whether the measure does not need to be really trained, since proxied measure is guaranteed to be trained appropriately prior to this call. Use with caution

enable_ca : None or list of str

Names of the conditional attributes which should be enabled in addition to the default ones

disable_ca : None or list of str

Names of the conditional attributes which should be disabled

null_dist : instance of distribution estimator

The estimated distribution is used to assign a probability for a certain value of the computed measure.

auto_train : bool

Flag whether the learner will automatically train itself on the input dataset when called untrained.

force_train : bool

Flag whether the learner will enforce training on the input dataset upon every call.

space : str, optional

Name of the ‘processing space’. The actual meaning of this argument heavily depends on the sub-class implementation. In general, this is a trigger that tells the node to compute and store information about the input data that is “interesting” in the context of the corresponding processing in the output dataset.

pass_attr : str, list of str|tuple, optional

Additional attributes to pass on to an output dataset. Attributes can be taken from all three attribute collections of an input dataset (sa, fa, a – see Dataset.get_attr()), or from the collection of conditional attributes (ca) of a node instance. Corresponding collection name prefixes should be used to identify attributes, e.g. ‘ca.null_prob’ for the conditional attribute ‘null_prob’, or ‘fa.stats’ for the feature attribute stats. In addition to a plain attribute identifier it is possible to use a tuple to trigger more complex operations. The first tuple element is the attribute identifier, as described before. The second element is the name of the target attribute collection (sa, fa, or a). The third element is the axis number of a multidimensional array that shall be swapped with the current first axis. The fourth element is a new name that shall be used for an attribute in the output dataset. Example: (‘ca.null_prob’, ‘fa’, 1, ‘pvalues’) will take the conditional attribute ‘null_prob’ and store it as a feature attribute ‘pvalues’, while swapping the first and second axes. Simplified instructions can be given by leaving out consecutive tuple elements starting from the end.

postproc : Node instance, optional

Node to perform post-processing of results. This node is applied in __call__() to perform a final processing step on the to be result dataset. If None, nothing is done.

descr : str

Description of the instance

Methods

measure

Return proxied measure