mvpa2.clfs.gpr.SquaredExponentialKernel¶
-
class
mvpa2.clfs.gpr.
SquaredExponentialKernel
(length_scale=1.0, sigma_f=1.0, **kwargs)¶ The Squared Exponential kernel class.
Note that it can handle a length scale for each dimension for Automtic Relevance Determination.
Methods
Initialize a Squared Exponential kernel instance.
Parameters: length_scale : float or numpy.ndarray, optional
the characteristic length-scale (or length-scales) of the phenomenon under investigation. (Defaults to 1.0)
sigma_f : float, optional
Signal standard deviation. (Defaults to 1.0)
enable_ca : None or list of str
Names of the conditional attributes which should be enabled in addition to the default ones
disable_ca : None or list of str
Names of the conditional attributes which should be disabled
Methods
-
compute_lml_gradient
(alphaalphaT_Kinv, data)¶ Compute grandient of the kernel and return the portion of log marginal likelihood gradient due to the kernel. Shorter formula. Allows vector of lengthscales (ARD).
-
compute_lml_gradient_logscale
(alphaalphaT_Kinv, data)¶ Compute grandient of the kernel and return the portion of log marginal likelihood gradient due to the kernel. Hyperparameters are in log scale which is sometimes more stable. Shorter formula. Allows vector of lengthscales (ARD).
-
length_scale
¶
-
reset
()¶
-
set_hyperparameters
(hyperparameter)¶ Set hyperaparmeters from a vector.
Used by model selection.
-