mvpa2.atlases.warehouse.norm¶
-
mvpa2.atlases.warehouse.norm(x, ord=None, axis=None)¶ Matrix or vector norm.
This function is able to return one of seven different matrix norms, or one of an infinite number of vector norms (described below), depending on the value of the
ordparameter.Parameters: x : array_like
Input array. If
axisis None,xmust be 1-D or 2-D.ord : {non-zero int, inf, -inf, ‘fro’}, optional
Order of the norm (see table under
Notes). inf means numpy’sinfobject.axis : {int, 2-tuple of ints, None}, optional
If
axisis an integer, it specifies the axis ofxalong which to compute the vector norms. Ifaxisis a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of these matrices are computed. Ifaxisis None then either a vector norm (whenxis 1-D) or a matrix norm (whenxis 2-D) is returned.Returns: n : float or ndarray
Norm of the matrix or vector(s).
Notes
For values of
ord <= 0, the result is, strictly speaking, not a mathematical ‘norm’, but it may still be useful for various numerical purposes.The following norms can be calculated:
ord norm for matrices norm for vectors None Frobenius norm 2-norm ‘fro’ Frobenius norm – inf max(sum(abs(x), axis=1)) max(abs(x)) -inf min(sum(abs(x), axis=1)) min(abs(x)) 0 – sum(x != 0) 1 max(sum(abs(x), axis=0)) as below -1 min(sum(abs(x), axis=0)) as below 2 2-norm (largest sing. value) as below -2 smallest singular value as below other – sum(abs(x)**ord)**(1./ord) The Frobenius norm is given by [R6]:
![||A||_F = [\sum_{i,j} abs(a_{i,j})^2]^{1/2}](../_images/math/10ef1d1f10668afe4f7c30a459853053a62606f2.png)
References
[R6] (1, 2) G. H. Golub and C. F. Van Loan, Matrix Computations, Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15 Examples
>>> from numpy import linalg as LA >>> a = np.arange(9) - 4 >>> a array([-4, -3, -2, -1, 0, 1, 2, 3, 4]) >>> b = a.reshape((3, 3)) >>> b array([[-4, -3, -2], [-1, 0, 1], [ 2, 3, 4]])
>>> LA.norm(a) 7.745966692414834 >>> LA.norm(b) 7.745966692414834 >>> LA.norm(b, 'fro') 7.745966692414834 >>> LA.norm(a, np.inf) 4 >>> LA.norm(b, np.inf) 9 >>> LA.norm(a, -np.inf) 0 >>> LA.norm(b, -np.inf) 2
>>> LA.norm(a, 1) 20 >>> LA.norm(b, 1) 7 >>> LA.norm(a, -1) -4.6566128774142013e-010 >>> LA.norm(b, -1) 6 >>> LA.norm(a, 2) 7.745966692414834 >>> LA.norm(b, 2) 7.3484692283495345
>>> LA.norm(a, -2) nan >>> LA.norm(b, -2) 1.8570331885190563e-016 >>> LA.norm(a, 3) 5.8480354764257312 >>> LA.norm(a, -3) nan
Using the
axisargument to compute vector norms:>>> c = np.array([[ 1, 2, 3], ... [-1, 1, 4]]) >>> LA.norm(c, axis=0) array([ 1.41421356, 2.23606798, 5. ]) >>> LA.norm(c, axis=1) array([ 3.74165739, 4.24264069]) >>> LA.norm(c, ord=1, axis=1) array([6, 6])
Using the
axisargument to compute matrix norms:>>> m = np.arange(8).reshape(2,2,2) >>> LA.norm(m, axis=(1,2)) array([ 3.74165739, 11.22497216]) >>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :]) (3.7416573867739413, 11.224972160321824)



